Linear Programming Chapter 1-2.2

Björn Morén

Introduction System of Linear Equalities Gauss Jordan Linear Inequalities

 Convex Functions
 Definitions sets
 Definitions functions
 Properties

1 Introduction

- System of Linear
 Equalities
 Gauss Jordan
 Linear Inequalities
- 3 Convex Functions Definitions sets Definitions functions Properties

Background

- System of linear equalities, 2000 years ago
- System of linear inequalities, 18th century
- Linear programming, 20th century

1 -2 1	1 -1 3	-1 1 -3	-9)
1 0 0	1 1 2	-1 -1 -2	5 1 2	
1 0 0	1 1 0	-1 -1 0		

Feasible solution, one redundant row

$$\begin{vmatrix} 1 & 1 & -1 & 5 \\ -2 & -1 & 1 & -9 \\ 1 & 3 & -3 & 8 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & -1 & 5 \\ -2 & -1 & 1 & -9 \\ 1 & 3 & -3 & 8 \end{vmatrix}$$
$$\begin{vmatrix} 1 & 1 & -1 & 5 \\ 0 & 1 & -1 & 1 \\ 0 & 2 & -2 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & -1 & | & 5 \\ -2 & -1 & 1 & | & -9 \\ 1 & 3 & -3 & | & 8 \end{vmatrix}$$
$$\begin{vmatrix} 1 & 1 & -1 & | & 5 \\ 0 & 1 & -1 & 1 \\ 0 & 2 & -2 & | & 3 \end{vmatrix}$$
$$\begin{vmatrix} 1 & 1 & -1 & | & 5 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & | & 1 \end{vmatrix}$$

Last row shows infeasibility

1 Introduction

- 2 System of Linear Equalities Gauss Jordan Linear Inequalities
- 3 Convex Functions Definitions sets Definitions functions Properties

7/24

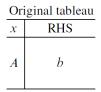
Theorem of alternatives for systems of linear equations

Theorem 1. *Excactly one of the following two systems has a solution.*

1.
$$Ax = b$$

2. $\pi = (\pi_1, ..., \pi_m)$
 $\sum_{i=1}^{m} \pi_i A_{i.} = \pi A = 0,$
 $\sum_{i=1}^{m} \pi_i b_i = \pi b = \alpha \neq 0.$

Memory Matrix in GJ



Memory Matrix in GJ

Original tableau Memory matrix

	0	
x	RHS	
A	b	Ι

Memory Matrix in GJ

Original tableau Memory matrix

x	RHS	
A	b	Ι

Curre	nt tableau	Memory matrix
X	RHS	
Ā	b	$ar{M}$

	PC						M	lemory m	atrix		
BV	x_1	x_2	x_3	χ_4	<i>x</i> ₅	b					
	1	1	1	1	1	-11	1	0 0	0	0	PR
	-1	0	-2	1	0	-3	0	1 0	0	0	
	-2	2	-6	6	2	-34	0	0 1	0	0	
	0	3	-2	-4	-1	2	0	0 0	1	0	
	-2	6	-9	4	2	-40	0	0 0	0	1	

							Memory matrix				
BV	x_1	x_2	<i>x</i> ₃	χ_4	x_5	b					
		PC									
x_1	1	1	1	1	1	-11	1	0 0	0 0		
	0	1	-1	2	1	-14	1	1 0	0 0	PR	
	0	4	-4	8	4	-56	2	0 1	0 0		
	0	3	-2	-4	$^{-1}$	2	0	0 0	1 0		
	0	8	-7	6	4	-62	2	0 0	0 1		

							N	/lemo	ry m	atrix		
BV	x_1	x_2	x_3	<i>x</i> ₄	x_5	b						
			PC									
x_1	1	0	2	-1	0	3	0	$^{-1}$	0	0	0	
x_2	0	1	$^{-1}$	2	1	-14	1	1	0	0	0	
	0	0	0	0	0	0	-2	-4	1	0	0	RC
	0	0	1	-10	-4	44	-3	-3	0	1	0	PR
	0	0	1	-10	-4	50	-6	-8	0	0	1	

							N	/lemo	ry n	natrix		
BV	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	x_5	b						
x_1	1	0	0	21	10	63	6	5	0	-2	0	
x_2	0	1	0	-8	-4	-54	-2	-2	0	1	0	
	0	0	0	0	0	0	-2	-4	1	0	0	RC
<i>x</i> ₃	0	0	1	-10	-4	44	-3	-3	0	1	0	
	0	0	0	0	0	6	-3	-5	0	-1	1	IC

Last row is proof of infeasibility

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 6 \quad -3 \quad -5 \quad 0 \quad -1 \quad 1$$

Where $\pi = (-3 - 5 \text{ o } -1 \text{ 1})$ such that $\pi A = 0$ and $\pi b = 6 \neq 0$

Revised GJ with Explicit Basis Inverse

- \bar{A} is not stored at each iteration
- \bar{A} can be computed: columns $\bar{A}_{.j} = \bar{M}A_{.j}$ and rows $\bar{A}_{i.} = \bar{M}_{i.}A$

Revised GJ with Explicit Basis Inverse

- \bar{A} is not stored at each iteration
- \bar{A} can be computed: columns $\bar{A}_{.j} = \bar{M}A_{.j}$ and rows $\bar{A}_{i.} = \bar{M}_{i.}A$
- Used in computer implementations to save memory
- Similar to Dantzigs revised simplex method
- Memory matrix referred to as basis inverse, denoted B^{-1}

Revised GJ with Explicit Basis Inverse

Method

- 1. Select pivot row i
- 2. Compute row *i*: \bar{A}_{i} .
- 3. If $\bar{A}_i \neq 0$, select nonzero pivot element jIf $\bar{A}_i = 0$, either row is redundant, go to 1 or problem is infeasible, method finishes.
- 4. Compute column $j: \bar{A}_{j}$ and perform pivot step
- 5. Stop when pivot step has been done for all rows

		Orig	ginal sy	stem			M	lemory	matriz	ĸ		
x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	b	BV	In	verse t	ableau	ı	PC	
								B^{-}	1		x_1	
1	1	1	1	1	-11		1	0 () 0	0	1	PR
-1	0	-2	1	0	-3		0	1 () 0	0	-1	
-2	2	-6	6	2	-34		0	0	1 0	0	-2	
0	3	-2	-4	-1	2		0	0 () 1	0	0	
-2	6	-9	4	2	-40		0	0 () 0	1	-2	

Original system			Memory matrix	
x_1 x_2 x_3 x_4 x_5	; b	BV	Inverse tableau	PC
			B^{-1}	<i>x</i> ₂
Now $PR = Row 2$.	-11	x_1	1 0 0 0 0	1
$\bar{A}_{2.} = (1, 1, 0, 0, 0)A$	-14		1 1 0 0 0	1 PR
= (0, 1, -1, 2, 1).	-56		2 0 1 0 0	4
x_2 selected EV.	2		0 0 0 1 0	3
$PC = B^{-1}A_{.2}$ entered.	-62		2 0 0 0 1	8

	Original s	ystem			M	emo	ry m	atrix		
$x_1 x_2$	<i>x</i> ₃ <i>x</i> ₄	<i>x</i> ₅	b	BV	In	verse	e tab	leau	PC	
						E	3-1		x_3	
$ \begin{array}{r} 1, 0, 0) \\ PR = Ra \\ 0, 1 \\ -10, - \end{array} $	w 3. $\bar{A}_{3.} =$ $A = 0. \bar{b}_{3} =$ w 4. $\bar{A}_{4.} =$,0) $A = (0,$ 5). EV = x $^{-1}A_{.3}$ enter	= 0. RC. = (-3, -3 0, 1, = (-3, -3)	3 - 14 0 44 50	x_1 x_2	$0 \\ 1 \\ -2 \\ -3 \\ -6$	1 - 4	1	0	$2 \\ -1 \\ 0 \\ 1 \\ 1$	PR

Original system			Memory matrix	
x_1 x_2 x_3 x_4 x_5	b	BV	Inverse tableau	
			B^{-1}	
$PR = Row 5. \ \bar{A}_{5.} = (-3, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5$	63	x_1	6 5 0 -2 0	
$(0, -3, 1)A = 0. \bar{b}_5 = 6.$ IC.	-54	<i>x</i> ₂	-2 -2 0 1 0	
PR = Row 5. $\bar{A}_{5.} = (-3, -5, 0, -3, 1)A = 0. \bar{b}_5 = 6.$ IC. Infeasible.	0		-2 -4 1 0 0	
	44	x_3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	6		-3 -5 0 -1 1	

Theorem 1.2. Consider the system of linear inequalities

$$Ax \ge b,\tag{1.4}$$

where $A = (a_{ij})$ is an $m \times n$ matrix and $b = (b_i) \in \mathbb{R}^m$. So, the constraints in the system are $A_i, x \ge b_i$, $i \in \{1, ..., m\}$. If this system has a feasible solution, then there exists a subset $\mathbf{P} = \{p_1, ..., p_s\} \subset \{1, ..., m\}$ such that every solution of the system of equations

$$A_{i.}x = b_i, \quad i \in \mathbf{P},$$

is also a feasible solution of the original system of linear inequalities (1.4).

Start with x^0 and P_0 indices of active constraints.

• If $P_0 = \emptyset$: Select a constraint *i* and a point \bar{x} on the constraint. If \bar{x} is infeasible. Find maximum λ such that $x^1 = x^0 + \lambda(\bar{x} - x^0)$ is feasible.

Start with x^0 and P_0 indices of active constraints.

• If $P_0 = \emptyset$: Select a constraint *i* and a point \bar{x} on the constraint. If \bar{x} is infeasible. Find maximum λ such that $x^1 = x^0 + \lambda(\bar{x} - x^0)$ is feasible.

In iteration r

1. If x^r is unique solution to system, terminate.

Start with x^0 and P_0 indices of active constraints.

• If $P_0 = \emptyset$: Select a constraint *i* and a point \bar{x} on the constraint. If \bar{x} is infeasible. Find maximum λ such that $x^1 = x^0 + \lambda(\bar{x} - x^0)$ is feasible.

In iteration r

- 1. If x^r is unique solution to system, terminate.
- **2.** Let $\{y\}$ be basis for $\{A_{i.}y = 0; i \in P_r\}$

Start with x^0 and P_0 indices of active constraints.

• If $P_0 = \emptyset$: Select a constraint *i* and a point \bar{x} on the constraint. If \bar{x} is infeasible. Find maximum λ such that $x^1 = x^0 + \lambda(\bar{x} - x^0)$ is feasible.

In iteration r

- 1. If x^r is unique solution to system, terminate.
- **2.** Let $\{y\}$ be basis for $\{A_{i.}y = 0; i \in P_r\}$
- 3. If $\{A_{i.}y = 0; \forall y, i\}$ terminate

Start with x^0 and P_0 indices of active constraints.

• If $P_0 = \emptyset$: Select a constraint *i* and a point \bar{x} on the constraint. If \bar{x} is infeasible. Find maximum λ such that $x^1 = x^0 + \lambda(\bar{x} - x^0)$ is feasible.

In iteration r

- 1. If x^r is unique solution to system, terminate.
- 2. Let $\{y\}$ be basis for $\{A_i, y = 0; i \in P_r\}$
- 3. If $\{A_{i.}y = 0; \forall y, i\}$ terminate
- 4. Otherwise, take \bar{y} such that $A_{i.}\bar{y} < 0$ for some *i*. Find maximum λ such that $x^{r+1} = x^r + \lambda(\bar{y} - x^r)$ is feasible.

1 Introduction

2 System of Linear Equalities Gauss Jordan Linear Inequalities 3 Convex Functions Definitions sets Definitions functions Properties

Convex sets

Definition 1. A set *K* is convex if for $x, y \in K, 0 \le \alpha \le 1$, then $z = \alpha x + (1 - \alpha)y \in K$

Convex functions

Jensen's inequality Let $0 \le \alpha \le 1$ and $y^1, y^2 \in \Gamma$ where Γ is a convex set.

Definition 2. A function g(y) is convex if $g(\alpha y^1 + (1 - \alpha)y^2) \le \alpha g(y^1) + (1 - \alpha)g(y^2)$

Concave functions

Let $0 \le \alpha \le 1$ and $y^1, y^2 \in \Gamma$ where Γ is a convex set.

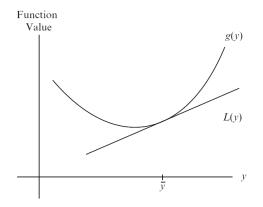
Definition 3. A function h(y) is concave if $h(\alpha y^1 + (1 - \alpha)y^2) \ge \alpha h(y^1) + (1 - \alpha)h(y^2)$

Gradient support inequality

Theorem 2. Let g(y) be a real-valued differentiable real-valued function defined on \mathbb{R}^n .

Then g(y) is convex iff $g(y) \ge g(\bar{y}) + \nabla g(\bar{y})(y - \bar{y})$

Gradient support inequality



Differentiable function

Theorem 3. Let g(y) be a real-valued differentiable real-valued function defined on \mathbb{R}^n .

Then g(y) is convex iff $(\nabla g(y^2) - \nabla g(y^1))(y^2 - y^1) \ge 0$

Twice differentiable function

Theorem 4. Let g(y) be a twice continously differentiable real-valued function defined on \mathbb{R}^n .

- 1. g(y) is convex iff the Hessian $H(g(y)) = (\frac{\partial^2 g(y)}{\partial y_i \partial y_j})$ is positive semi-definite.
- 2. g(y) is concave iff the Hessian is negative semi-definite.

24/24

Twice differentiable function: In practice

Using Hessian to check convexity

- Hard in the general case
- Easy for quadratic functions $f(x) = xDx + cx + c_0$ Hessian equals $\frac{D+D^T}{2}$ and is constant

