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Background

x1 + x2 − x3 = 5
−2x1 − x2 + x3 = −9
x1 + 3x2 − 3x3 = 7

• System of linear equalities, 2000 years ago

• System of linear inequalities, 18th century

• Linear programming, 20th century
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Repetition Gauss Jordan (GJ)

1 1 -1 5

-2 -1 1 -9

1 3 -3 7

1 1 -1 5

0 1 -1 1

0 2 -2 2

1 1 -1 5

0 1 -1 1

0 0 0 0

Feasible solution, one redundant row



Linear Programming Björn Morén October 20, 2016 4 / 24

Repetition Gauss Jordan (GJ)

1 1 -1 5

-2 -1 1 -9

1 3 -3 7

1 1 -1 5

0 1 -1 1

0 2 -2 2

1 1 -1 5

0 1 -1 1

0 0 0 0

Feasible solution, one redundant row



Linear Programming Björn Morén October 20, 2016 4 / 24

Repetition Gauss Jordan (GJ)

1 1 -1 5

-2 -1 1 -9

1 3 -3 7

1 1 -1 5

0 1 -1 1

0 2 -2 2

1 1 -1 5

0 1 -1 1

0 0 0 0

Feasible solution, one redundant row



Linear Programming Björn Morén October 20, 2016 5 / 24

Repetition Gauss Jordan (GJ)

1 1 -1 5

-2 -1 1 -9

1 3 -3 8

1 1 -1 5

0 1 -1 1

0 2 -2 3

1 1 -1 5

0 1 -1 1

0 0 0 1

Last row shows infeasibility



Linear Programming Björn Morén October 20, 2016 5 / 24

Repetition Gauss Jordan (GJ)

1 1 -1 5

-2 -1 1 -9

1 3 -3 8

1 1 -1 5

0 1 -1 1

0 2 -2 3

1 1 -1 5

0 1 -1 1

0 0 0 1

Last row shows infeasibility



Linear Programming Björn Morén October 20, 2016 5 / 24

Repetition Gauss Jordan (GJ)

1 1 -1 5

-2 -1 1 -9

1 3 -3 8

1 1 -1 5

0 1 -1 1

0 2 -2 3

1 1 -1 5

0 1 -1 1

0 0 0 1

Last row shows infeasibility



1 Introduction

2 System of Linear

Equalities
Gauss Jordan

Linear Inequalities

3 Convex Func-

tions
Definitions sets

Definitions func-

tions

Properties



Linear Programming Björn Morén October 20, 2016 7 / 24

Theorem of alternatives for systems of linear

equations

Theorem 1. Excactly one of the following two

systems has a solution.

1. Ax = b

2. π = (π1, . . . , πm)
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Memory Matrix in GJ
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Memory Matrix in GJ: Example
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Memory Matrix in GJ: Example

Last row is proof of infeasibility

Where π = (-3 -5 0 -1 1)

such that πA = 0 and πb = 6 6= 0
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Revised GJ with Explicit Basis Inverse

• Ā is not stored at each iteration

• Ā can be computed: columns Ā.j = M̄A.j and

rows Āi. = M̄i.A

• Used in computer implementations to save

memory

• Similar to Dantzigs revised simplex method

• Memory matrix referred to as basis inverse,

denoted B−1
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Revised GJ with Explicit Basis Inverse

Method

1. Select pivot row i

2. Compute row i: Āi.

3. If Āi 6= 0, select nonzero pivot element j
If Āi = 0, either row is redundant, go to 1 or

problem is infeasible, method finishes.

4. Compute column j: Āj. and perform pivot step

5. Stop when pivot step has been done for all rows
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Systems of Linear Inequalities
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Systems of Linear Inequalities

Start with x0 and P0 indices of active constraints.

• If P0 = ∅: Select a constraint i and a point x̄ on the
constraint. If x̄ is infeasible. Find maximum λ such
that x1 = x0 + λ(x̄− x0) is feasible.

In iteration r

1. If xr is unique solution to system, terminate.

2. Let {y} be basis for {Ai.y = 0; i ∈ Pr}
3. If {Ai.y = 0; ∀y, i} terminate
4. Otherwise, take ȳ such that Ai.ȳ < 0 for some i.

Find maximum λ such that xr+1 = xr + λ(ȳ − xr)
is feasible.
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Convex sets

Definition 1. A setK is convex if for

x, y ∈ K, 0 ≤ α ≤ 1,
then z = αx+ (1− α)y ∈ K
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Convex functions

Jensen’s inequality

Let 0 ≤ α ≤ 1 and y1, y2 ∈ Γ where Γ is a convex set.

Definition 2. A function g(y) is convex if
g(αy1 + (1− α)y2) ≤ αg(y1) + (1− α)g(y2)
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Concave functions

Let 0 ≤ α ≤ 1 and y1, y2 ∈ Γ where Γ is a convex set.

Definition 3. A function h(y) is concave if
h(αy1 + (1− α)y2) ≥ αh(y1) + (1− α)h(y2)



Linear Programming Björn Morén October 20, 2016 20 / 24

Gradient support inequality

Theorem 2. Let g(y) be a real-valued differentiable

real-valued function defined on Rn.

Then g(y) is convex iff g(y) ≥ g(ȳ) +∇g(ȳ)(y − ȳ)
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Gradient support inequality
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Differentiable function

Theorem 3. Let g(y) be a real-valued differentiable

real-valued function defined on Rn.

Then g(y) is convex iff (∇g(y2)−∇g(y1))(y2 − y1) ≥ 0
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Twice differentiable function

Theorem 4. Let g(y) be a twice continously

differentiable real-valued function defined on Rn.

1. g(y) is convex iff the HessianH(g(y)) = ( ∂
2g(y)

∂yi∂yj
) is

positive semi-definite.

2. g(y) is concave iff the Hessian is negative

semi-definite.
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Twice differentiable function: In practice

Using Hessian to check convexity

• Hard in the general case

• Easy for quadratic functions f(x) = xDx+ cx+ c0
Hessian equals D+DT

2 and is constant
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